高中数学教案通用15篇
高中数学教案通用15篇
在教学工作者开展教学活动前,常常要写一份优秀的教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。如何把教案做到重点突出呢?以下是小编为大家收集的高中数学教案,仅供参考,希望能够帮助到大家。
高中数学教案1
教学目标:
1。理解并掌握瞬时速度的定义;
2。会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;
3。理解瞬时速度的实际背景,培养学生解决实际问题的能力。
教学重点:
会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度。
教学难点:
理解瞬时速度和瞬时加速度的定义。
教学过程:
一、问题情境
1。问题情境。
平均速度:物体的运动位移与所用时间的`比称为平均速度。
问题一平均速度反映物体在某一段时间段内运动的快慢程度。那么如何刻画物体在某一时刻运动的快慢程度?
问题二跳水运动员从10m高跳台腾空到入水的过程中,不同时刻的速度是不同的。假设t秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度.
2。探究活动:
(1)计算运动员在2s到2.1s(t∈)内的平均速度。
(2)计算运动员在2s到(2+?t)s(t∈)内的平均速度。
(3)如何计算运动员在更短时间内的平均速度。
探究结论:
时间区间
t
平均速度
0.1
-13.59
0.01
-13.149
0.001
-13.1049
0.0001
-13.10049
0.00001
-13.100049
0.000001
-13.1000049
当?t?0时,?-13.1,
该常数可作为运动员在2s时的瞬时速度。
即t=2s时,高度对于时间的瞬时变化率。
二、建构数学
1。平均速度。
设物体作直线运动所经过的路程为,以为起始时刻,物体在?t时间内的平均速度为。
可作为物体在时刻的速度的近似值,?t越小,近似的程度就越好。所以当?t?0时,极限就是物体在时刻的瞬时速度。
三、数学运用
例1物体作自由落体运动,运动方程为,其中位移单位是m,时
间单位是s,,求:
(1)物体在时间区间s上的平均速度;
(2)物体在时间区间上的平均速度;
(3)物体在t=2s时的瞬时速度。
分析
解
(1)将?t=0.1代入上式,得:=2.05g=20.5m/s。
(2)将?t=0.01代入上式,得:=2.005g=20.05m/s。
(3)当?t?0,2+?t?2,从而平均速度的极限为:
例2设一辆轿车在公路上作直线运动,假设时的速度为,
求当时轿车的瞬时加速度。
解
∴当?t无限趋于0时,无限趋于,即=。
练习
课本P12―1,2。
四、回顾小结
问题1本节课你学到了什么?
1理解瞬时速度和瞬时加速度的定义;
2实际应用问题中瞬时速度和瞬时加速度的求解;
问题2解决瞬时速度和瞬时加速度问题需要注意什么?
注意当?t?0时,瞬时速度和瞬时加速度的极限值。
问题3本节课体现了哪些数学思想方法?
2极限的思想方法。
3特殊到一般、从具体到抽象的推理方法。
五、课外作业
高中数学教案2
教学目标
进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。
教学重难点
教学重点:熟练运用定理。
教学难点:应用正、余弦定理进行边角关系的相互转化。
教学过程
一、复习准备:
1、写出正弦定理、余弦定理及推论等公式。
2、讨论各公式所求解的三角形类型。
二、讲授新课:
1、教学三角形的解的讨论:
①出示例1:在△ABC中,已知下列条件,解三角形。
分两组练习→讨论:解的个数情况为何会发生变化?
②用如下图示分析解的情况。(A为锐角时)
练习:在△ABC中,已知下列条件,判断三角形的解的情况。
2、教学正弦定理与余弦定理的活用:
①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦。
分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角。
②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型。
分析:由三角形的什么知识可以判别?→求角余弦,由符号进行判断
③出示例4:已知△ABC中,试判断△ABC的.形状。
分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?
3、小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。
高中数学教案3
教学目标
(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。
(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。
(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。
(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。
(5)进一步理解数形结合的思想方法。
教学建议
教材分析
(1)知识结构
曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。
(2)重点、难点分析
①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。
②本节的难点是曲线方程的概念和求曲线方程的方法。
教法建议
(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的基础是点与坐标的对应关系。注意强调曲线方程的完备性和纯粹性。
(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备。
(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。
(4)从集合与对应的观点可以看得更清楚:
设 表示曲线 上适合某种条件的点 的集合;
表示二元方程的解对应的点的坐标的集合。
可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即
(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的.方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。
这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即
文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程
由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”
(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。
高中数学教案4
一、单元教学内容
(1)算法的基本概念
(2)算法的基本结构:顺序、条件、循环结构
(3)算法的基本语句:输入、输出、赋值、条件、循环语句
二、单元教学内容分析
算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力
三、单元教学课时安排:
1、算法的基本概念3课时
2、程序框图与算法的基本结构5课时
3、算法的基本语句2课时
四、单元教学目标分析
1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义
2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。
3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。
4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
五、单元教学重点与难点分析
1、重点
(1)理解算法的含义(2)掌握算法的基本结构(3)会用算法语句解决简单的实际问题
2、难点
(1)程序框图(2)变量与赋值(3)循环结构(4)算法设计
六、单元总体教学方法
本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。
七、单元展开方式与特点
1、展开方式
自然语言→程序框图→算法语句
2、特点
(1)螺旋上升分层递进(2)整合渗透前呼后应(3)三线合一横向贯通(4)弹性处理多样选择
八、单元教学过程分析
1.算法基本概念教学过程分析
对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的'思想,了解算法的含义,能用自然语言描述算法。
2.算法的流程图教学过程分析
对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。
3.基本算法语句教学过程分析
经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,
4.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
九、单元评价设想
1.重视对学生数学学习过程的评价
关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。
2.正确评价学生的数学基础知识和基本技能
关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法
高中数学教案5
教学目标
1.了解映射的概念,象与原象的概念,和一一映射的概念.
(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;
(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;
(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.
2.在概念形成过程中,培养学生的观察,比较和归纳的能力.
3.通过映射概念的学习,逐步提高学生对知识的探究能力.
教学建议
教材分析
(1)知识结构
映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:
由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.
(2)重点,难点分析
本节的教学重点和难点是映射和一一映射概念的形成与认识.
①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;
映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.
②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.
教法建议
(1)在映射概念引入时,可先从学生熟悉的`对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.
(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:
(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.
(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.
(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.
教学设计方案
2.1映射
教学目标(1)了解映射的概念,象与原象及一一映射的概念.
(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.
(3)通过映射概念的学习,逐步提高学生的探究能力.
教学重点难点::映射概念的形成与认识.
教学用具:实物投影仪
教学方法:启发讨论式
教学过程:
一、引入
在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.
二、新课
在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)
我们今天要研究的是一类特殊的对应,特殊在什么地方呢?
提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?
让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)
提问2:能用自己的语言描述一下这几个对应的共性吗?
经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)
高中数学教案6
三维目标:
1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
2、过程与方法:
(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
教学方法:
讲练结合法
教学用具:
多媒体
课时安排:
1课时
教学过程:
一、问题情境
假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?
二、探究新知
1、统计的有关概念:总体:在统计学中,所有考察对象的全体叫做总体、个体:每一个考察的`对象叫做个体、样本:从总体中抽取的一部分个体叫做总体的一个样本、样本容量:样本中个体的数目叫做样本的容量、统计的基本思想:用样本去估计总体、
2、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
下列抽样的方式是否属于简单随机抽样?为什么?
(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
(3)从8台电脑中,不放回地随机抽取2台进行质量检查(假设8台电脑已编好号,对编号随机抽取)
3、常用的简单随机抽样方法有:
(1)抽签法的定义。一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
思考?你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?例1、若已知高一(6)班总共有57人,现要抽取8位同学出来做游戏,请设计一个抽取的方法,要使得每位同学被抽到的机会相等。
分析:可以把57位同学的学号分别写在大小,质地都相同的纸片上,折叠或揉成小球,把纸片集中在一起并充分搅拌后,在从中个抽出8张纸片,再选出纸片上的学号对应的同学即可、基本步骤:第一步:将总体的所有N个个体从1至N编号;第二步:准备N个号签分别标上这些编号,将号签放在容器中搅拌均匀后每次抽取一个号签,不放回地连续取n次;第三步:将取出的n个号签上的号码所对应的n个个体作为样本。
(2)随机数法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。第一步,先将800袋牛奶编号,可以编为000,001,799。
第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;
继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。
三、课堂练习
四、课堂小结
1、简单随机抽样的概念一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
2、简单随机抽样的方法:抽签法随机数表法
五、课后作业
P57练习1、2
六、板书设计
1、统计的有关概念
2、简单随机抽样的概念
3、常用的简单随机抽样方法有:(1)抽签法(2)随机数表法
4、课堂练习
高中数学教案7
教学目标:
1.理解流程图的选择结构这种基本逻辑结构.
2.能识别和理解简单的框图的功能.
3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.
教学方法:
1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.
2. 在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.
教学过程:
一、问题情境
1.情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为
其中(单位:)为行李的重量.
试给出计算费用(单位:元)的一个算法,并画出流程图.
二、学生活动
学生讨论,教师引导学生进行表达.
解 算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1-2-6.
在上述计费过程中,第二步进行了判断.
三、建构数学
1.选择结构的'概念:
先根据条件作出判断,再决定执行哪一种
操作的结构称为选择结构.
如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.
2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判
断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;
(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;
(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执
行,但或两个框中可以有一个是空的,即不执行任何操作;
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和
两个退出点.
3.思考:教材第7页图所示的算法中,哪一步进行了判断?
高中数学教案8
教学目标:
1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.
2.会求一些简单函数的反函数.
3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.
4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.
教学重点:求反函数的方法.
教学难点:反函数的概念.
教学过程:
教学活动
设计意图一、创设情境,引入新课
1.复习提问
①函数的概念
②y=f(x)中各变量的意义
2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.
3.板书课题
由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.
二、实例分析,组织探究
1.问题组一:
(用投影给出函数与;与()的图象)
(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)
(2)由,已知y能否求x?
(3)是否是一个函数?它与有何关系?
(4)与有何联系?
2.问题组二:
(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(3)函数 ()的定义域与函数()的值域有什么关系?
3.渗透反函数的概念.
(教师点明这样的函数即互为反函数,然后师生共同探究其特点)
从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.
通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.
三、师生互动,归纳定义
1.(根据上述实例,教师与学生共同归纳出反函数的定义)
函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.
2.引导分析:
1)反函数也是函数;
2)对应法则为互逆运算;
3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;
4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;
5)函数y=f(x)与x=f(y)互为反函数;
6)要理解好符号f;
7)交换变量x、y的原因.
3.两次转换x、y的对应关系
(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的.函数值y与反函数中的自变量x是等价的)
4.函数与其反函数的关系
函数y=f(x)
函数
定义域
A
C
值 域
C
A
四、应用解题,总结步骤
1.(投影例题)
【例1】求下列函数的反函数
(1)y=3x-1 (2)y=x 1
【例2】求函数的反函数.
(教师板书例题过程后,由学生总结求反函数步骤.)
2.总结求函数反函数的步骤:
1° 由y=f(x)反解出x=f(y).
2° 把x=f(y)中 x与y互换得.
3° 写出反函数的定义域.
(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?
(2)的反函数是________.
(3)(x<0)的反函数是__________.
在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.
通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.
通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.
题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.
五、巩固强化,评价反馈
1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)
(1)y=-2x 3(xR) (2)y=-(xR,且x)
( 3 ) y=(xR,且x)
2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.
五、反思小结,再度设疑
本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.
(让学生谈一下本节课的学习体会,教师适时点拨)
进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂.
六、作业
习题2.4第1题,第2题
进一步巩固所学的知识.
教学设计说明
"问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.
反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。
高中数学教案9
一、教学目标
【知识与技能】
在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。
【过程与方法】
通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】
渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点
【重点】
掌握圆的一般方程,以及用待定系数法求圆的'一般方程。
【难点】
二元二次方程与圆的一般方程及标准圆方程的关系。
三、教学过程
(一)复习旧知,引出课题
1、复习圆的标准方程,圆心、半径。
2、提问1:已知圆心为(1,―2)、半径为2的圆的方程是什么?
高中数学教案10
【教学目标】
1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2.能根据几何结构特征对空间物体进行分类。
3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。
【教学重难点】
教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
教学难点:柱、锥、台、球的结构特征的概括。
【教学过程】
1.情景导入
教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。
2.展示目标、检查预习
3、合作探究、交流展示
(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?
(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
(3)提出问题:请列举身边的棱柱并对它们进行分类
(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。
(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)
(2)棱柱的任何两个平面都可以作为棱柱的.底面吗?
(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
(5)绕直角三角形某一边的几何体一定是圆锥吗?
5、典型例题
例1:判断下列语句是否正确。
⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。
⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。
答案 A B
6、课堂检测:
课本P8,习题1.1 A组第1题。
7.归纳整理
由学生整理学习了哪些内容
【板书设计】
一、柱、锥、台、球的结构
二、例题
例1
变式1、2
【作业布置】
导学案课后练习与提高
1.1.1柱、锥、台、球的结构特征
课前预习学案
一、预习目标:
通过图形探究柱、锥、台、球的结构特征
二、预习内容:
阅读教材第2―6页内容,然后填空
(1)多面体的概念: 叫多面体,
叫多面体的面, 叫多面体的棱,
叫多面体的顶点。
① 棱柱:两个面 ,其余各面都是 ,并且每相邻两个四边形的公共边都 ,这些面围成的几何体叫作棱柱
②棱锥:有一个面是 ,其余各面都是 的三角形,这些面围成的几何体叫作棱锥
③棱台:用一个 棱锥底面的平面去截棱锥, ,叫作棱台。
(2)旋转体的概念: 叫旋转体, 叫旋转体的轴。
①圆柱: 所围成的几何体叫做圆柱
②圆锥: 所围成的几何
体叫做圆锥
③圆台: 的部分叫圆台
. ④球的定义
思考:
(1)试分析多面体与旋转体有何去别
(2)球面球体有何去别
(3)圆与球有何去别
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
高中数学教案11
【课题名称】
《等差数列》的导入
【授课年级】
高中二年级
【教学重点】
理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。
【教学难点】
等差数列的性质、等差数列“等差”特点的理解,
【教具准备】多媒体课件、投影仪
【三维目标】
㈠知识目标:
了解公差的概念,明确一个等差数列的限定条件,能根据定义判断一个等差数列是否是一个等差数列;
㈡能力目标:
通过寻找等差数列的共同特征,培养学生的观察力以及归纳推理的能力;
㈢情感目标:
通过对等差数列概念的归纳概括,培养学生的观察、分析资料的能力。
【教学过程】
导入新课
师:上两节课我们已经学习了数列的定义以及给出表示数列的几种方法―列举法、通项法,递推公式、图像法。这些方法分别从不同的角度反映了数列的特点。下面我们观察以下的几个数列的例子:
(1)我们经常这样数数,从0开始,每个5个数可以得到数列:0,5,10,15,20,()
(2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目工设置了7个级别,其中较轻的4个级别体重组成的数列(单位:kg)为48,53,58,63,()试问第五个级别体重多少?
(3)为了保证优质鱼类有良好的生活环境,水库管理员定期放水清库以清除水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一个数列:18,15.5,13,10.5,8,(),则第六个数应为多少?
(4)10072,10144,10216,(),10360
请同学们回答以上的四个问题
生:第一个数列的第6项为25,第二个数列的第5个数为68,第三个数列的`第6个数为5.5,第四个数列的第4个数为10288。
师:我来问一下,你是依据什么得到了这几个数的呢?请以第二个数列为例说明一下。
生:第二个数列的后一项总比前一项多5,依据这个规律我就得到了这个数列的第5个数为68.
师:说的很好!同学们再仔细地观察一下以上的四个数列,看看以上的四个数列是否有什么共同特征?请注意,是共同特征。
生1:相邻的两项的差都等于同一个常数。
师:很好!那作差是否有顺序?是否可以颠倒?
生2:作差的顺序是后项减去前项,不能颠倒!
师:正如生1的总结,这四个数列有共同的特征:从第二项起,每一项与它的前一项的差都等于同一个常数(即等差)。我们叫这样的数列为等差数列。这就是我们这节课要研究的内容。
推进新课
等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示。从刚才的分析,同学们应该注意公差d一定是由后项减前项。
师:有哪个同学知道定义中的关键字是什么?
生2:“从第二项起”和“同一个常数”
高中数学教案12
教学目标:
(1)理解子集、真子集、补集、两个集合相等概念;
(2)了解全集、空集的意义。
(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;
(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;
(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;
(6)培养学生用集合的观点分析问题、解决问题的能力。
教学重点:
子集、补集的概念
教学难点:
弄清元素与子集、属于与包含之间的区别
教学用具:
幻灯机
教学过程设计
(一)导入新课
上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识。
【提出问题】(投影打出)
已知xx,xx,xx,问:
1、哪些集合表示方法是列举法。
2、哪些集合表示方法是描述法。
3、将集M、集从集P用图示法表示。
4、分别说出各集合中的元素。
5、将每个集合中的元素与该集合的关系用符号表示出来、将集N中元素3与集M的关系用符号表示出来。
6、集M中元素与集N有何关系、集M中元素与集P有何关系。
【找学生回答】
1、集合M和集合N;(口答)
2、集合P;(口答)
3、(笔练结合板演)
4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)
5、xx,xx,xx,xx,xx,xx,xx,xx(笔练结合板演)
6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)
【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题、
(二)新授知识
1、子集
(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
记作:xx读作:A包含于B或B包含A
当集合A不包含于集合B,或集合B不包含集合A时,则记作:AxxB或BxxA、
性质:①xx(任何一个集合是它本身的子集)
②xx(空集是任何集合的子集)
【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?
【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合。
因为B的子集也包括它本身,而这个子集是由B的全体元素组成的空集也是B的子集,而这个集合中并不含有B中的元素、由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的。
(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
例:xx,可见,集合xx,是指A、B的所有元素完全相同。
(3)真子集:对于两个集合A与B,如果xx,并且xx,我们就说集合A是集合B的真子集,记作:xx(或xx),读作A真包含于B或B真包含A。
【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的`真子集。”
集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B。
【提问】
(1)xx写出数集N,Z,Q,R的包含关系,并用文氏图表示。
(2)xx判断下列写法是否正确
①xxAxx②xxAxx③xx④AxxA
性质:
(1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,则xxA;
(2)如果xx,xx,则xx。
例1xx写出集合xx的所有子集,并指出其中哪些是它的真子集、
解:集合xx的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。
【注意】(1)子集与真子集符号的方向。
(2)易混符号
①“xx”与“xx”:元素与集合之间是属于关系;集合与集合之间是包含关系。如xxR,{1}xx{1,2,3}
②{0}与xx:{0}是含有一个元素0的集合,xx是不含任何元素的集合。
如:xx{0}。不能写成xx={0},xx∈{0}
例2xx见教材P8(解略)
例3xx判断下列说法是否正确,如果不正确,请加以改正、
(1)xx表示空集;
(2)空集是任何集合的真子集;
(3)xx不是xx;
(4)xx的所有子集是xx;
(5)如果xx且xx,那么B必是A的真子集;
(6)xx与xx不能同时成立、
解:(1)xx不表示空集,它表示以空集为元素的集合,所以(1)不正确;
(2)不正确、空集是任何非空集合的真子集;
(3)不正确、xx与xx表示同一集合;
(4)不正确、xx的所有子集是xx;
(5)正确
(6)不正确、当xx时,xx与xx能同时成立、
例4xx用适当的符号(xx,xx)填空:
(1)xx;xx;xx;
(2)xx;xx;
(3)xx;
(4)设xx,xx,xx,则AxxBxxC、
解:(1)0xx0xx;
(2)xx=xx,xx;
(3)xx,xx∴xx;
(4)A,B,C均表示所有奇数组成的集合,∴A=B=C、
【练习】教材P9
用适当的符号(xx,xx)填空:
(1)xx;xx(5)xx;
(2)xx;xx(6)xx;
(3)xx;xx(7)xx;
(4)xx;xx(8)xx、
解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、
提问:见教材P9例子
(二)xx全集与补集
1、补集:一般地,设S是一个集合,A是S的一个子集(即xx),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作xx,即
、
A在S中的补集xx可用右图中阴影部分表示、
性质:xxS(xxSA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},则xxSA={2,4,6};
(2)若A={0},则xxNA=N;
(3)xxRQ是无理数集。
2、全集:
如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用xx表示。
注:xx是对于给定的全集xx而言的,当全集不同时,补集也会不同。
例如:若xx,当xx时,xx;当xx时,则xx。
例5xx设全集xx,xx,xx,判断xx与xx之间的关系。
解:
练习:见教材P10练习
1、填空:
xx,xx,那么xx,xx。
解:xx,
2、填空:
(1)如果全集xx,那么N的补集xx;
(2)如果全集,xx,那么xx的补集xx(xx)=xx、
解:(1)xx;(2)xx。
(三)小结:本节课学习了以下内容:
1、五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点)
2、五条性质
(1)空集是任何集合的子集。ΦxxA
(2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)
(3)任何一个集合是它本身的子集。
(4)如果xx,xx,则xx、
(5)xxS(xxSA)=A
3、两组易混符号:(1)“xx”与“xx”:(2){0}与
(四)课后作业:见教材P10习题1、2
高中数学教案13
教学准备
教学目标
熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。
掌握两角和与差的正、余弦公式,能用公式解决相关问题。
教学重难点
熟练两角和与差的正、余弦公式的'正用、逆用和变用技巧。
教学过程
复习
两角差的余弦公式
用- B代替B看看有什么结果?
高中数学教案14
教学目标:
1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.
2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.
教学重点:
复数的几何意义,复数加减法的几何意义.
教学难点:
复数加减法的几何意义.
教学过程:
一 、问题情境
我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?
二、学生活动
问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?
问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?
问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的',我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?
问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?
三、建构数学
1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.
2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.
3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.
6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.
四、数学应用
例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.
练习 课本P123练习第3,4题(口答).
思考
1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?
2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?
3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.
4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.
例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.
例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.
思考 任意两个复数都可以比较大小吗?
例4 设z∈C,满足下列条件的点Z的集合是什么图形?
(1)│z│=2;(2)2<│z│<3.
变式:课本P124习题3.3第6题.
五、要点归纳与方法小结
本节课学习了以下内容:
1.复数的几何意义.
2.复数加减法的几何意义.
3.数形结合的思想方法.
高中数学教案15
第一章:空间几何体
1.1.1柱、锥、台、球的结构特征
一、教学目标
1.知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪
四、教学思路
(一)创设情景,揭示课题
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本P8,习题1.1A组第1题。
4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本P7练习1、2(1)(2)
课本P8习题1.1第2、3、4题
五、归纳整理
由学生整理学习了哪些内容
六、布置作业
课本P8练习题1.1B组第1题
课外练习课本P8习题1.1B组第2题
1.2.1空间几何体的三视图(1课时)
一、教学目标
1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简单组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:观察、动手实践、讨论、类比
2.教学用具:实物模型、三角板
四、教学思路
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
(二)实践动手作图
1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;
2.教师引导学生用类比方法画出简单组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习
课本P12练习1、2P18习题1.2A组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的'棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
1.2.2空间几何体的直观图(1课时)
一、教学目标
1.知识与技能
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点
重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具
1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规
四、教学思路
(一)创设情景,揭示课题
1.我们都学过画画,这节课我们画一物体:圆柱
把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
练习反馈
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4.平行投影与中心投影
投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5.巩固练习,课本P16练习1(1),2,3,4
三、归纳整理
学生回顾斜二测画法的关键与步骤
四、作业
1.书画作业,课本P17练习第5题
2.课外思考课本P16,探究(1)(2)