首页 > 教案设计 > 数学教案设计 >

函数的应用举例

网友分享 113622

分享

函数的应用举例

教学目标
    1. 能够运用函数的性质,指数函数,对数函数的性质解决某些简单的实际问题.
    (1) 能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学本,弄清题中出现的量及其数学含义.
    (2) 能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题,并调动函数的相关性质解决问题.
    (3) 能处理有关几何问题,增长率的问题,和物理方面的实际问题.
    2. 通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了练习的价值.
    3. 通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的爱好,使学生对函数思想等有了进一步的了解.
    教学建议
    教材分析
    (1)本小节内容是全章知识的综合应用.这一节的出现体现了强化应用意识的要求,让学生能把数学知识应用到生产,生活的实际中去,形成应用数学的意识.所以培养学生分析解决问题的能力和运用数学的意识是本小节的重点,根据实际问题建立数学模型是本小节的难点.
    (2)在解决实际问题过程中常用到函数的知识有:函数的概念,函数解析式的确定,指数函数的概念及其性质,对数概念及其性质,和二次函数的概念和性质.在方法上涉及到换元法,配方法,方程的思想,数形结合等重要的思方法..事业本节的学习,既是对知识的复习,也是对方法和思想的再熟悉.
    教法建议
    (1)本节中处理的均为应用问题,在题目的叙述表达上均较长,其中要分析把握的信息量较多.事业处理这种大信息量的阅读题首先要在阅读上下功夫,找出关键语言,关键数据,非凡是对实际问题中数学变量的隐含限制条件的提取尤为重要.
    (2)对于应用问题的处理,第二步应根据各个量的关系,进行数学化设计建立目标函数,将实际问题通过分析概括,抽象为数学问题,最后是用数学方法将其化为常规的函数问题(或其它数学问题)解决.此类题目一般都是分为这样三步进行.
    (3)在现阶段能处理的应用问题一般多为几何问题,利润最大,费用最省问题,增长率的问题及物理方面的问题.在选题时应以以上几方面问题为主.
    教学设计示例
    函数初步应用
    教学目标
    1.能够运用常见函数的性质及平面几何有关知识解决某些简单的实际问题.
    2.通过对实际问题的 研究,培养学生分析问题,解决问题的能力
    3.通过把实际问题向数学问题的转化,渗透数学建模的思想,提高学生用数学的意识,及学习数学的爱好.
    教学重点,难点
    重点是应用问题的阅读分析和解决.
    难点是根据实际问题建立相应的数学模型
    教学方法
    师生互动式
    教学用具
    投影仪
    教学过程
3页,当前第1123
AD位1

相关推荐

高山仰止,可望难即,满天神佛何处觅指是什么生肖,精准解答精准落实

传统文化

法相千变,形形色色,近在眼前人不识是什么生肖,精准解释落实

传统文化

何处飞来鸿双影代表最佳生肖,解释词语落实释义

传统文化

”无可非难”指最佳生肖,释义词语落实解释

传统文化

一言之词五可中,码有码路三四条的最佳生肖什么,解释释义落实词语

传统文化
AD位2

热门图文

AD3

上一篇:第三教时

下一篇:4.7二倍角的正弦、余弦、正切(4)